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described. The optimal design for an association study 
when sequencing budget would be fixed is obtained using 
large sample size and lower sequence depth, and using 
higher SNP density (resulting in higher LD with causative 
mutations) and lower sequencing depth. Therefore, asso-
ciation studies using genotyping by sequencing are optimal 
and use low sequencing depth per sample. The developed 
framework for association studies using allele frequencies 
from sequencing can be modified for other types of family 
pools and is also directly applicable for association studies 
in polyploids.

Introduction

Gene mapping, by linkage or association studies, is well 
established in diploid organisms, with individual measure-
ments of phenotypes, and in inbred lines such as RIL popu-
lations (Lander and Botstein 1989; Ripol et al. 1999; Lon 
and John 2001; Andersen and Lübberstedt 2003). This still 
leaves areas where gene mapping is less straightforward, 
for instance in cases where phenotypes are measured on 
groups of individuals, such as yields of plots, and where the 
species is cross-pollinating. This is for instance the situa-
tion in breeding of perennial ryegrass (Lolium Perenne L.). 
This species is extensively used as forage and turf grass in 
Europe and is the most valuable forage and turf grass spe-
cies in temperate climates (Altpeter et al. 2000). Although 
some phenotypes in perennial ryegrass can be measured on 
individual plants, traits such as yield and persistency are 
frequently measured under competitive sward conditions.

In an outcrossing species it is not straightforward to 
link the yield obtained on a family to a genotype, because 
the individuals within a family are genetically heterogene-
ous (Huff 1997; Thorogood et  al. 2002). Thus, either the 
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family yield must be linked to the genotypes of the par-
ents or some kind of compound/average “family genotype” 
must be obtained. We argue here that for diploid outbreed-
ing plants the full-sib family will show up to four dosages 
of every allele, the sum of up to two-allele dosages present 
in each parent. Thus, the “family genotype” of an F2 full-
sib family can be described as a tetraploid genotype. This 
allows developing a framework for association studies 
using F2 family phenotypes and genotypes.

For the genotyping of family pools, a sequencing 
approach is considered here. Next-generation sequencing, 
with its increasing throughput and rapidly decreasing costs, 
has become a feasible approach for genotyping (Deschamps 
et  al. 2012). Two sequencing-based approaches for geno-
typing have been proposed so far: (1) complexity reduc-
tion by sequencing of a limited part of the genome from 
restriction sites, called genotyping-by-sequencing (GBS) 
(Elshire et  al. 2011); and (2) whole-genome sequencing 
(WGS) (John et al. 2011). GBS can be considered when no 
reference genome is available, but would need a reasonable 
sequencing depth, probably 5–10× as a minimum average 
depth, to avoid too many missing data points. WGS with 
very low sequencing depth (<1×) has been proposed as a 
genotyping strategy in humans, and thus relies on an avail-
able full-genome reference sequence and individual full-
genome sequences to impute large amounts of missing data 
(Pasaniuc et  al. 2012). Such resources, however, are not 
yet available for perennial ryegrass at this moment, leaving 
GBS as the currently viable approach for high-throughput 
genotyping. The work in this study is based on this back-
ground, where we consider average sequencing depths of 
5× and higher.

GBS technology will be interesting for measurements 
on pools because it primarily obtains allele counts from 
the sequencing reads, which can be processed to allele-fre-
quency estimates (Byrne et al. 2013). Ideally, when the data 
are from pools, such allele-frequency estimates would be 
used directly, rather than calling genotypes. Accurate call-
ing of tetraploid genotypes from sequence data requires a 
sequencing depth of 60×–80× (Uitdewilligen et al. 2013), 
which would make GBS too expensive for large-scale gen-
otyping in the application we consider. Arguably, the allele 
frequencies also suffer from inaccuracy, but we show here 
that we can take account of that inaccuracy when working 
with allele frequencies by correcting for the measurement 
error. Measurement error on covariates is well known to 
cause underestimation of the regression coefficient (Bek-
ker 1986; Chesher 1991), but correcting for this measure-
ment error when using GBS data is not yet described. The 
use of allele-frequency estimates from pools for association 
and linkage studies has been considered before, but only in 
the context of pooling based on phenotypes, e.g. high/low 
phenotype pools (Sham et  al. 2002; Zou and Zhao 2005) 

or cases/control pools (Norton et al. 2004; Moskvina et al. 
2005). The case where pools are families, and where one 
phenotype per family is measured, is not yet considered, 
and theory and models for association studies based on 
allele frequencies are lacking for this case.

The aim of this study is to develop an approach for 
association studies using F2-family pools based on allele-
frequency estimates from GBS data, and to study the opti-
mal design for an association study using GBS. The ulti-
mate goal of this work is to supply methods for association 
studies in breeding material of outbreeding species that use 
family-based breeding systems, such as several grass spe-
cies. For the optimal design, we consider the usual practi-
cal constraint where the total sequencing budget is fixed. 
This implies that a balance needs to be found in the number 
of samples, sequencing depth and number of SNPs, where 
increasing one will go at the expense of others. We will use 
one- and two-locus simulation studies to verify allele effect 
estimates and to determine optimal design. We also develop 
a correction for the measurement error from GBS data 
that leads to underestimation of the allele effect. We will 
develop our framework by considering the estimation of the 
additive allele effect and using simulations for a continu-
ous normally distributed trait. The linear model framework 
allows to extend this straightforwardly to include environ-
mental effects, multiple SNPs and interactions of various 
kinds, and to consider other distributions for the trait.

Materials and methods

Notation for individuals

First, we develop notation for a one-locus model in dip-
loid individuals, which will apply to parents in a perennial 
ryegrass breeding program. For a biallelic locus, genotypes 
are denoted as aa, Aa, and AA, with matching numerical 
values as the allele dose for the A allele as g = {0, 1, 2}. 
The genotypic value G is expressed as 0, a and 2a. Fur-
ther, the frequency of the A allele is taken as p in parents, 
and assuming Hardy–Weinberg equilibrium which implies 
assumption of random mating, the genotype frequencies are 
(1 − p)2, 2p(1 − p) and p2. This leads to the well-known 
expression E[g] = 2pa and genetic variance for individuals 
at the biallelic locus, assuming that parents are unrelated 
and non-inbred (e.g., Falconer and Mackay 1996): 

Genotype of F2‑family pools

Next, we determine an “average family genotype” with 
the ultimate aim to associate family phenotypes with such 

(1)Var[G] = 2p(1 − p) a2
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average family genotypes. Figure 1 shows a schematic rep-
resentation of the creation of F2 families as used in ryegrass 
breeding. Three parental matings producing three F2 fami-
lies are shown, with segregating genotypes in parents and 
F2 families. In this scheme, due to the intermediate F1 gen-
eration, genotypes in the F2 families segregate in Hardy–
Weinberg proportions, assuming random cross-pollination 
between the F1’s. The segregation ratios in the F2 families 
seem to match the average allele dosage in the parents. For 
instance, the left shown mating with a total allele dosage of 
3 A alleles (out of 4) in parents shows genotype segrega-
tion in the F2 family at a ¾ allele frequency for the A allele 
(1/16 aa, 6/16 Aa, 9/16 AA). We propose here to define an 
F2-family genotype as either the average allele dosage in 
the pool, which will be from 0 to 2 in steps of ½, or as the 
allele frequency within that family, in quarters. Table 1 lists 
all possible parental matings, F1 and F2 genotypes, and 
the defined F2-family genotype as an allele frequency. The 
F2-family genotype can, conceptually, also be thought of as 
a tetraploid genotype.

Table 1 also lists the frequency at which every parental 
mating occurs. This mating frequency depends on the popu-
lation allele frequency and assumes random sampling and 
random mating of parents with respect to the single locus 
considered. Because this mating frequency directly relates 
to the frequency for the five F2-family genotypes, these 
also can be thought of as the genotype frequencies for the 
F2-family genotypes. These are indeed genotype frequen-
cies for a tetraploid genotype, which can be derived from a 
binomial expression to sample four alleles with frequency p:

From expression (2), it can be directly obtained that the 
frequencies for the F2 pool genotypes {0, ¼, ½, ¾, 1} are 
(1 − p)4, 4p(1 − p)3, 6p2(1 − p)2, 4p3(1 − p) and p4.

Association of family phenotypes and genotypes

From Table 1, it can also be verified that the additive gen-
otypic value in the F2 pool is the average of the additive 
genotypic values of the parents, i.e. GF2 = ½ (GP1 + GP2). 
We assume that the family phenotype (the collective per-
formance of the group) is the same as the average pheno-
type in a family (the average of the performance of the 
individuals). Thus, the genotypic value of an F2 pool can 
be expressed in the same way as for a biallelic genotype for 
an individual:

The genetic variance across families explained by the F2 
pool genotypes works out to be: 

This is half of the variance explained by genotypes 
measured on an individual. This expression for the variance 
assumes no covariance between the parental genotypes, 
i.e. assumes that parents are not related, but the expression 
could be extended to include such a covariance to account 
for relationship between the parents.

(2)Pr(k) = 4!
k!(4 − k)!pk(1 − p)4−k , k = 0, . . . 4

(3)GF2 = gF2a

(4)Var(GF2) =
(

var

(

1

2
gP1

)

+ var

(

1

2
gP2

))

= p(1 − p)a2

Fig. 1   Schematic representation for the creation of family pools used 
to measure phenotypes such as yield in grasses: three crosses are 
shown with parents that segregate at a biallelic locus with alleles a 
and A; the created F2 families will segregate in five distinct segrega-
tion ratios with allele frequencies within the families of 0, ¼, ½, ¾, 
and 1, which corresponds to the combined allele dosage in the two 
parents of each family

Table 1   F2 pool allele frequencies obtained from parental crosses

Parental mating Frequency  
of mating

F1 genotypes Average pool  
allele dose

F2 genotypes F2 pool alelle 
frequency (gF2)

aa × aa (1 − p)4 aa 0 aa 0

aa × Aa 4p(1 − p)3 aa (1/2) and Aa (1/2) 1/2 aa (9/16), Aa (6/16), AA (1/16) 1/4

aa × AA 2p2(1 − p)2 Aa 1 aa (1/4), Aa (1/2) and AA (1/4) 1/2

Aa × Aa 4p2(1 − p)2 aa (1/4), Aa (1/2) and AA (1/4) 1 aa (1/4), Aa (1/2) and AA (1/4) 1/2

Aa × AA 4p3(1 − p) Aa (1/2) and AA (1/2) 3/2 aa (1/16), Aa (6/16), AA (9/16) 3/4

AA × AA p4 AA 2 AA 1
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Estimate of allele effect in F2‑family pools

In general, the allele effect at a locus is estimated by 
regressing phenotypes on the genotype covariate. The 
expectation of this regression can be derived by expressing 
the phenotype as the sum of genotypic value and an envi-
ronmental term:

For the case of F2 pools, the genotypic value included in 
the phenotype is GF2 = ḡF2a, which leads to a regression of 
F2 phenotypes on F2 pool genotypes from the model:

This shows that the use of F2 pool frequencies will obtain 
twice the estimate of allele effect. However, the standard error 
on the estimate using F2 pools will be larger than when indi-
viduals could have been used, which is a consequence of hav-
ing only half the variance across pools compared to individu-
als. Expression (6) assumes that the genotypes are obtained 
without error, which is generalized in the next section.

Using genotyping by sequencing and genotypes 
with measurement error

When using GBS, genotypes will be subject to measure-
ment error which leads to underestimation of the allele 
effect. For the use of GBS, we consider an approach where 
genotypes are not explicitly called, but allele frequencies 
obtained from sequencing are directly used for an asso-
ciation study. For a genotype obtained by GBS, consider 
that ST total sequencing reads are obtained, with S1 reads 
showing one SNP allele and S2 reads showing the other 
SNP allele. This allows to directly obtain an estimate of the 
genotype in the form of an allele-frequency estimate, for 
instance arbitrarily for the first allele:

This genotype estimate will be subject to measurement 
error due to binomial sampling, which depends on popula-
tion allele frequency. However, as we show below, the final 
expression for the bias in the allele effect estimate does not 
depend on population allele frequency. The average bino-
mial sampling variance on these genotype estimates is 
determined by the underlying allele frequencies within the 
F2 families, which are the gF2 values in Table 1, weighted 
by the frequencies for these F2 families to occur, which is 
given by Eq. (2):

(5)P = G + E

(6)

P = µ + bF2gF2 + e

where bF2 = cov(PF2, gF2)

var(gF2)
= var(gF2)a

var(gF2)
= 2a

(7)ĝF2 = S1/ST

(8)
σ 2

bin =
5

∑

k=1

gF2(k)(1 − gF2(k)) Pr (k) = 3p(1 − p)

4ST

This allows to derive the expected estimate of allele 
effect from regressing F2 phenotypes on F2 pool allele fre-
quencies, from the model:

The crucial difference with expression (6) is that the 
denominator in (9) is increased by the binomial noise term. 
This shows that there is an underestimation or bias in the 
estimate of the allele effect of:

where the last expression in (10) is based on using the 
binomial noise variance from (8) and the genotype variance 
in F2 pool genotypes, which is (4) omitting a2. Equation 
(10) shows that the bias in the allele effect does no longer 
depend on allele frequency. The above expression (10) is 
derived for a constant sequencing depth across all samples. 
To account for variable depth across samples, the harmonic 
weighted mean of the depths per sample should be used in 
(10).

Simulation setup

We performed simulation studies to verify estimation of 
allele effect and to study optimal design for an associa-
tion study when the total sequencing budget is fixed. For 
estimation of the allele effect, we vary sample size, allele 
frequency and sequencing depth in a one-locus model and 
verify that underestimation of the allele effect as described 
by Eq. (10) only depends on sequencing depth. For the 
power study, we vary the sample size versus sequencing 
depth, and SNP density versus sequencing depth in such 
a way that the total sequencing effort is the same. Power 
studies are done in one-locus and two-locus models, where 
the two-locus model considers the case that we observed a 
marker linked to a causative mutation.

One‑locus model and estimation of allele effect

In the general case, the allele effect at a locus can be esti-
mated by regressing phenotypes on the allele frequency. 
This regression can be described by expressing phenotype 
as the sum of genotypic values of F2 frequency pool and 
environmental term. In this simulation study, the allele 
effect was set as 1 and assumed that there is no other 
genetic variation except environmental standard deviation. 
The explained variance from the one-locus model (4) at 
three levels of given allele frequencies (0.1, 0.3 and 0.5) 

(9)

P = µ + bF2ĝF2 + e

b = cov(PF2, ĝF2)

var(ĝF2)
= var(gF2)a

var(gF2) + σ 2
bin

(10)bias =
var(gF2)

(var(gF2) + σ 2
bin)

=
1

1 + σ 2
bin/var(gF2)

=
1

1 + 3/ST
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works out to be 0.0014, 0.0032, 0.0038 at environmental 
standard deviation 4. Normally, average sequencing depth 
is being used in most studies, but here we are keeping it as 
constant. R scripts used for these simulations are available 
in supplementary material. The following steps were made 
in this simulation:

1.	 Frequencies of F2 pool genotypes were generated 
using the binomial distribution expression (2), we used 
the sample sizes (number of families) 500, 1,000, 2,000 
and 4,000 against the sequencing depth 3, 7, 15 and 30 
and allele frequencies 0.1, 0.3 and 0.5. The environ-
mental standard deviation in this model was set as 4 
and 10 (Results at SD 10 can be seen in supplementary 
material Table  2). Here, the families are the observa-
tion units, because we have one observation per family. 
The generated counts were divided by full sequencing 
depth.

2.	 The sequencing counts were generated using true and 
observed frequencies across the families. The true fre-
quencies give a best possible estimate if the frequency 
per family would be known without error and observed 
frequencies are the counts generated from the binomial 
distribution, so it is a reflection of that same frequen-
cies, but with the noise from the binomial sampling.

3.	 To estimate the allele effect, we regressed F2 pheno-
types on F2 pool genotypes using the model in expres-
sion (9) in the R lm-function (Chambers 1992).

4.	 The estimated regression coefficients were computed 
for true and observed frequencies (results with true fre-
quencies presented in supplementary material Table 1).

5.	 The procedure was repeated 1,000 times; mean and 
standard deviation of the estimated regression coeffi-
cients were reported.

One‑locus model power study

We performed simulations to study the optimal design 
for association study in one-locus model. Here, we varied 
sample size, sequencing depth, allele frequency and envi-
ronmental standard deviation. We repeated the same previ-
ous steps 1–2 and used regression of F2 phenotypes on F2 
pool genotype expression (9) to obtain P values for both 
observed and true frequencies.

Incorporating additional errors

To see how the power changes by including sequencing and 
genotype calling errors in simulation studies. Here, we sim-
ulate the situation in which power to detect a single gene 
associated with a marker in the presence of 10 % sequenc-
ing errors per read and genotype calling at 5  % level of 

significance. We used variable sequencing depth across the 
families, assuming a Poisson distribution with an average 
depth 3, 7, 15 and 30× for the family sizes 4,000, 2,000, 
1,000 and 500, respectively. This whole procedure was 
replicated 1,000 times and the number of significant cases 
counted.

Two‑locus model power study

In a second simulation study, two loci in Linkage Dis-
equilibrium (LD) were generated, where one locus was 
the causal but unobserved locus affecting the phenotype, 
and the second locus was an observed marker locus used 
for analysis. In this simulation, the level of LD between 
causal and marker locus was varied at three levels to show 
the impact of observing a linked locus instead of the causal 
locus. The SNP density, and thus average LD between 
SNPs and causal loci, can be modified in GBS by choos-
ing different restriction enzymes. But also here, when the 
sequencing budget is fixed, choosing for higher marker 
density should go at the expense of either sample size or 
average sequencing depth.

To simulate a two-locus model, we considered loci A and 
B with alleles A1, A2 and B1, B2, and haplotype frequencies 
of A1B1 =  x11, A1B2 =  x12, A2B1 =  x21, A2B2 =  x22. This 
gives allele frequencies for allele A1 as p1 = x11 + x12, allele 
A2 as p2 = x21 + x22, allele B1 as q1 = x11 + x21 and allele B2 
as q2 = x12 + x22. LD was expressed here as the correlation 
(r) between genotypes, but in order to simulate haplotypes 
we needed the basic measure of LD as a covariance (D), 
where the relation between r and D is (Falconer 1996):

Equation (11) allows, for a desired level of r, to deter-
mine D, and to set the haplotype frequencies as:

For the F2 pool genotypes, we sampled four haplotypes 
from each family and obtained the 4-allele family-pool 
genotypes for the loci A and B. Phenotypes were simu-
lated as for the one-locus study, but locus A was used as 
the causal locus to generate phenotypes, while locus B was 
used as the observed marker locus.

The LD levels in ryegrass appear to be relatively strong 
for distances <1  Kb, but dropping fast beyond a few Kb 
(Byrne et al. 2013). This led us to consider scenarios where 
we doubled the sequencing depth twice (7, 15 and 30 
depth), which at total fixed sequenced budget means halv-
ing the marker density twice and corresponded to a rela-
tively steep decline in LD. We choose the corresponding 
LD levels r = 0.95, 0.7 and 0.3.

(11)r = D√
(p1q1)(p2q2)

x11 = p1q1 + D, x21 = p2q1− D, x12 = p1q2− D and

x22 = p2q2 + D
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In these simulations, we set sample size to 2,000, used 
an environmental standard deviation of 4, and allele fre-
quency of 0.1, 0.3 and 0.5. The whole procedure was rep-
licated 1,000 times and the numbers of significant effects 
were counted. R script for these simulations is provided in 
supplementary material.

Results

Estimation of allele effect in one‑locus model

Figure  2 presents estimated allele effects in a one-locus 
model from simulated F2-family phenotypes and GBS 
genotypes, by regressing the pool phenotypes on the pool 
allele-frequency estimates. The results present allele effect 
estimates for different sample size, sequencing depth and 
allele frequency, and every point in the graph is based on 
1,000 replicates. The true allele effect in these simulations 
was 1. Results show a quite severe underestimation of the 
allele effect at very low sequencing depth (around 0.5 at 
depth 3), and also at depth 30 some bias remains. Figure 2 
also presents corrected estimates by applying the derived 
formula for the bias from measurement error. As can be 
seen, the corrected estimates are very close to the true ones 
with only a small remaining underestimation at very low 
sequencing depth and low allele frequency. Overall, the 
underestimation of allele effect depends very little on allele 
frequency.

We also computed an estimate of the allele effect with 
environmental standard deviation 10; the results showed 

that this leads to more underestimation in the estimate of 
allele effect (Table  1 in supplementary material). Further, 
we also computed the same for true underlying frequencies 
in the families, which showed almost the same trend at dif-
ferent levels of sample size and allele frequencies. A full 
version of the simulation results can be seen in supplemen-
tary material Table 1.

One‑locus model power study

To study the optimal design for an association study, we 
performed simulation studies where we varied sample 
size, sequencing depth and allele frequencies in one locus 
model. The simulation results for this setup can be seen in 
Fig. 3.

Figure  3 shows that sample size has a large effect on 
power, from nearly no power with sample size 500 to 
around 80–90 % power (for the intermediate allele frequen-
cies) for sample size 4,000. A secondary important factor 
is allele frequencies showing reduced power at allele fre-
quency 0.1 compared to the other two frequencies. There is 
not much difference in the power at allele frequencies 0.3 
and 0.5. Sequencing depth, finally, has the smallest effect 
on power: from the left panel at sequencing depth 3 to the 
right panel at sequencing depth 30, power only increases 
marginally. The largest differences in power are in the mid-
dle range, for instance at sample size 2,000 power increases 
from about 40 % at sequencing depth 3 to about 60 % at 
sequencing depth 30.

By adding more environmental variance, i.e., using an 
environmental standard deviation of 10, we obtained the 

Fig. 2   Averages estimated 
allele effects in a one-locus 
model. Estimate of allele effect 
(uncorrected three lines) was 
computed at three different 
levels of allele frequencies (0.1, 
0.3, 0.5), with environmental 
standard deviation 4. Cor-
rected three lines are based on 
applying the derived theoretical 
expression (10) for bias from 
using GBS. The true generated 
allele effect was 1
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expected result, .i.e., the power to detect a single gene 
decreased. Complete results of this simulation study are 
available in supplementary material Table 2.

The results from Fig. 3 are presented again in Fig. 4 by 
selecting cases with approximately equal sequencing effort, 
hence approximately equal costs. This optimizes power for 
a given budget. Results show that power is higher at larger 
sample size (4,000) and low sequencing depth (3), and 
starts decreasing by increasing the sequencing depth and 
reducing sample sizes. There is not much difference in the 
power at allele frequencies 0.5 and 0.3 while at 0.1, power 
is comparatively lower.

Overall, this simulation results show that the power to 
detect a single gene associated with a marker is highest 
when using the larger sample size at the expense of sequenc-
ing depth, similarly in the situation of fixed sequencing 
capacity it would be more advantageous to use low sequenc-
ing depth and maximize the number of samples.

Like many other sequence data sets, GBS datum is also 
contaminated with some noise. To realize this situation, we 

Fig. 3   Power to detect a single gene associated with a marker using 
GBS. The x-axis shows sample size and y-axis indicates the power 
(estimate of the probability) from 1,000 replicates. We used four 
sequencing depths (3, 7, 15, and 30). The lines, red, blue and black, 

show the number of significant results at allele frequency 0.5, 0.3 and 
0.1 respectively at environmental standard deviation 4. Here, we used 
observed frequencies in the families when applying regression of F2 
phenotype on F2 pool genotype expression (9)

Fig. 4   Power to detect a single gene associated with a marker at 
(almost) equal sequencing efforts in simulation studies. The x-axis is 
the sample size times sequencing depth and y-axis is the power (esti-
mate of probability) from 1,000 replicates. Three lines, red, blue and 
black, depict the power at three levels of allele frequencies (0.5, 0.3 
and 0.1). (Subset of results presented in Fig. 3)
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also performed simulations to see how the power to detect a 
single gene associated with a marker varies in the presence 
of some additional errors. Here, we employ (almost) equal 
sequencing efforts to obtain power in the presence of three 
errors (due to binomial sampling, sequencing and all three 
i.e., binomial, sequencing and genotype calling errors).

Results (Fig.  5) show that at larger sample size power 
is 0.76 if there is only noise due to binomial sampling, by 
adding more noise due to sequencing, the power decreased 
to 0.47 and even it reduced to 0.45 by incorporating addi-
tional noise from genotype calling. Results also indicate 

that in the situation of fixed sequencing budget, it is more 
pertinent to increase the number of samples at the expense 
of sequencing depth.

Two‑locus model power study

To optimize the SNP density given a fixed sequencing 
budget, we performed simulation studies in a two-locus 
model, where we consider the case that a marker is linked 
to a causative mutation. In this power study, we varied SNP 
density [LD (r) stronger to weak] versus sequencing depth 
(small to large). Like in the one-locus model power study, 
we used three levels of allele frequencies of 0.1, 0.3 and 
0.5, with environmental standard deviations of 2 and 4, and 
a sample size 2,000. The results of this simulation can be 
seen in Table 2.

Table  2 shows that power to obtain a significant asso-
ciation reduces rapidly when LD reduces, and this is not 
compensated by the higher sequencing depth at lower LD 
levels. Also here, sequencing depth is the minor factor 
determining power. Comparison with analysis of the causal 
locus shows that power is not much reduced when having a 
linked locus at r = 0.95, and is also still reasonable with a 
linked locus at r = 0.7.

Power as a function of LD and sample size

We also performed simulations to investigate how the 
power depends on sample size (with almost equal sequenc-
ing efforts) at different levels of LD. Results (Fig.  5) 
indicate that the power to achieve significant association 
decreased when LD levels reduce, and given allele frequen-
cies are less important to obtain the higher power.

These results revealed that within the constraints of 
a fixed sequencing budget, higher power can be obtained 
using higher SNP density, leading to higher LD with causal 
loci, i.e. by choosing a more frequently cutting restriction 
enzyme in the GBS technique (Fig. 6).

Fig. 5   Simulation of the power to detect a single associated with 
marker in the presence of three errors: binomial sampling, binomial 
sampling and sequencing error (10 % error rate per read) and all three 
binomial sampling, sequencing and genotype calling errors at 5  % 
level of significance. The x-axis is the number of families by sequenc-
ing depth per family. The unequal sequencing depth was simulated 
assuming Poisson distribution with mean depth of 3, 7, 15 and 30× 
against family sizes 4,000, 2,000, 1,000 and 500, respectively. The 
black dotted line corresponds to the power in the presence of only 
binomial sampling error; the blue line is the power if there are two 
errors, i.e. binomial sampling and sequencing errors; the red indi-
cates the power when we incorporate all three errors, i.e. binomial, 
sequencing and genotype calling errors. The environmental standard 
deviation was used to be 4

Table 2   Power to detect a significant association (number significant from 1,000 replicates) when the measured SNP is not causal and has dif-
ferent levels of LD with a causal locus

The LD levels are chosen to approximately represent steps of halving the SNP density, allowing sequencing at double depth for every step

Env. SD Allele freq Power at LD (r) and sequencing depth (D) Power at causal locus

r = 0.95, D = 7 r = 0.7, D = 15 r = 0.3, D = 30

2 0.1 0.696 0.534 0.153 0.791

2 0.3 0.973 0.874 0.249 0.984

2 0.5 0.996 0.945 0.346 0.997

4 0.1 0.248 0.197 0.086 0.281

4 0.3 0.533 0.359 0.112 0.544

4 0.5 0.601 0.446 0.155 0.629
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Discussion

We have developed theory and models to perform associa-
tion studies in F2-family pools where the “pool genotype” 
is obtained as an allele-frequency estimate from GBS. The 
GBS technology is getting more and more interesting due 
to dropping prices for sequencing and lends itself flex-
ibly to genotype either individuals or pools. Use of GBS 
on pools is especially attractive, because GBS produces 
allele-frequency estimates (Byrne et  al. 2013), which is 
the most logical approach to process pool genotyping data 
from outbreeding plants. Other studies proposing the use 
of GBS have considered to explicitly call genotypes, but 
relatively large sequencing depth is required to minimize 
errors for genotype calling. Chenuil (2012) computed that 
accurate calling of heterozygotes in diploid species needs 
a minimum sequencing depth of around 10×. The situ-
ation gets much worse for tetraploids, which would also 
apply to the F2-family pools in our study: accurate call-
ing of tetraploid genotypes requires sequencing depths of 
60–80× (Uitdewilligen et  al. 2013). At lower sequencing 
depths, the called genotypes would show considerable 
measurement error. Although it might be possible also to 

deal with that error on a genotype level, our approach to 
use allele frequencies and to deal with the error on the fre-
quency estimates is much more logical and straightforward. 
Our approach to analyze F2-family pools could directly 
be applied for association studies in polyploids. We have 
argued that the genotype of an F2 pool (here from diploid 
parents) is conceptually the same as a tetraploid genotype 
(Björn et al. 2010). The proposed association model using 
GBS data is a regular linear regression model, allowing 
to add environmental covariates, gene–gene and gene–
environment interactions, and to fit the model in standard 
software packages. Also, multi-locus models may be con-
sidered, and we anticipate that it will be useful to include 
our bias terms as ‘weights’ in multi-locus models to correct 
for differences between SNPs in sequencing depth. Other 
species with similar breeding schemes may use F1 full-sib 
families or F1 half-sib families. Such other types of fam-
ily pools could be accommodated in our association model 
framework.

In our derivation of expected pool genotypes, we have 
relied on knowledge of the genetic origin, i.e., we assumed 
that pools originate from the crossing of F1 parents. As a 
background for the developed model we have considered 

Fig. 6   Power as a function of LD and sample size, to obtain signifi-
cant association when the measured SNP is not causal and has dif-
ferent levels of LD with a causal locus. The LD levels are chosen 
in such a way that it represent halving the SNP density at each step, 
allowing (almost) equal sequencing efforts. Three levels (0.5, 0.3 and 

0.1) of allele frequencies were used at environmental standard devia-
tion 4 from 1,000 replicates. Complete results (also with environ-
mental standard deviation 2) are supplied in supplementary material 
(Table 3)
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a perennial ryegrass breeding program. The F1 propaga-
tion in perennial ryegrass breeding is done in open fields, 
with the theoretical possibility of pollination from other 
F1 plots. Such cross-pollination would reduce the genetic 
variance between pools (making F2 pools more alike), and 
could in principle be assessed and included in statistical 
models when also the parents are genotyped. However, typ-
ically pollen barriers of other tall crops are placed between 
the F1 plots to minimize pollination from other fields. Also, 
other factors may change or distort the allele frequencies in 
the pools, for instance genetic drift, selection, and linkage 
to self-incompatibility loci. We argue that a strong point 
in the approach to sequence pools is that any such distor-
tion is directly measured and will be taken into account. 
An approach to call genotypes would be less robust against 
such distortions, because it would force the frequencies to 
quarters, even when that may not be correct.

Sequencing is not perfect, but current Next-Generation 
Sequencing technology allows to accurately compute an 
individual base-call error rate (Phred scores; Illumina 
2011). A common QC would only accept base reads with a 
probability for an incorrect base call below 1/1,000 (Phred 
score > 30). We assessed the effect of sequencing error at 
a much higher level, which indeed showed a reduction in 
power due to sequencing errors. Also the calling of geno-
types, which forces the (semi-)continuous frequencies to 
quarters, reduces power slightly.

In the theory derived here, we have not considered rela-
tionships between parents, inbreeding between the F1’s, 
dominance, and drift in the F1 replication. As we have noted, 
relationships between parents can be inserted by modify-
ing Eq. (4) to include a covariance term between the paren-
tal genotypes. The intercrossing between F1 full sibs will 
cause inbreeding in the F2’s, but this inbreeding could be 
ignored because the analysis is based on F2 mean genotypes 
and phenotypes and on additive models. The inbreeding in 
F2 will increase variance between the individuals in the F2 
family, but under an additive model this does not change the 
family mean phenotype or genotype. Extending the model to 
include dominance, however, would need to account for this 
inbreeding in the F2, and would require that the level of self- 
and cross-pollination is known. Perennial ryegrass is mostly 
cross-pollinating and may also show some self-pollination, 
depending on alleles at self-incompatibility loci (Huff 1997; 
Thorogood et al. 2002). This makes it non-trivial to correctly 
determine this inbreeding and derive proper estimates for 
dominance effects in perennial ryegrass F2-family pools. In 
principle, there is also genetic drift in the F1 replication, but 
the F1 × F1 replication is based on at least 100 plants so that 
drift should be small.

In our theory we have derived an expression for the 
measurement error on allele frequencies obtained from 

GBS data. This measurement error leads to an underes-
timation of the allele effect when using GBS data. The 
theoretical derivation of the measurement error showed 
that the underestimation should not depend on allele fre-
quency. The simulation studies showed a very small devia-
tion from the theory for low sample size and low allele fre-
quency, but overall our theoretical expression is adequate 
to describe and correct for the underestimation in the allele 
effect estimates. The correction for measurement error 
can be used to provide corrected, thus comparable, allele 
effect estimates across SNPs, across studies, or for predic-
tion models. In our power studies, we have not explicitly 
considered the underestimation of allele frequency from 
measurement error in the pool genotypes as this is not rel-
evant to assess significance and power. Measurement error 
is well studied in several areas of especially social research 
and is known to create potentially complicated biases when 
models become more complex (Bekker 1986; Chesher 
1991). In our study, we were able to derive an expression 
for this measurement error from knowledge on the under-
lying genetics of F2-family pools. When the genetic back-
ground of pools or varieties become less clear, for instance 
when multiple parents contribute to a variety in unknown 
proportions, additional approaches may be used to derive 
or assess the measurement error (Fuller 1987; Divers et al. 
2007; Padilla et al. 2009).

The power studies show that sequencing depth is the 
least critical parameter in achieving large power. Therefore, 
it is advantageous to increase sample size and/or SNP den-
sity at the expense of a lower sequencing depth. We veri-
fied that in theory sequencing depth may even be as low 
as 2 reads/sample, if this would be compensated by larger 
sample size. Some other studies (Pasaniuc et al. 2012) also 
suggested the advantages of even lower sequencing depth. 
However, due to variation in the sequencing depth over the 
genome, this would lead to many missing genotypes. One 
of the main issues of using GBS is missing data (Beissinger 
et al. 2013); therefore, we recommend using a sequencing 
depth which is just sufficient to minimize missing data. 
Assuming a Poisson distribution for the number of reads 
sequenced per sample, the probability to have no reads is 
0.7 % at average depth 5, 0.2 % at average depth 6, 0.1 % 
at average depth 7, etc. In practice the missing rates are 
higher due to additional variation, but first experiences with 
GBS data on pools of ryegrass varieties (Byrne et al. 2013) 
indicate that missing rates are manageable at average depth 
between 5× and 10×.
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